Fiber-optic communication

January 18, 2008 | By archives | Filed in: Blogging.

Optical fiber

An optical fiber (or fibre) is a glass or plastic fiber designed to guide light along its length. Fiber optics is the overlap of applied science and engineering concerned with the design and application of optical fibers. Optical fibers are widely used in fiber-optic communication, which permits transmission over longer distances and at higher data rates than other forms of communications. Fibers are used instead of metal wires because signals travel along them with less loss, and they are immune to electromagnetic interference. Optical fibers are also used to form sensors, and in a variety of other applications.

Light is kept in the “core” of the optical fiber by total internal reflection. This causes the fiber to act as a waveguide. Fibers which support many propagation paths or transverse modes are called multimode fibers (MMF). Fibers which support only a single mode are called singlemode fibers (SMF). Multimode fibers generally have a large-diameter core, and are used for short-distance communication links or for applications where high power must be transmitted. Singlemode fibers are used for most communication links longer than 200 meters.

Joining lengths of optical fiber is more complex than joining electrical wire or cable. The ends of the fibers must be carefully cleaved, and then spliced together either mechanically or by fusing them together with an electric arc. Special connectors are used to make removable connections.

Optical fiber communication

optical fiber

Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the light signals propagating in the fiber can be modulated at rates as high as 40 Gb/s, and each fiber can carry many independent channels, each by a different wavelength of light (wavelength-division multiplexing).

Over short distances, such as networking within a building, fiber saves space in cable ducts because a single fiber can carry much more data than a single electrical cable. Fiber is also immune to electrical interference, which prevents cross-talk between signals in different cables and pickup of environmental noise. Also, wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof.

Because they are non-electrical, fiber cables can bridge very high electrical potential differences and can be used in environments where explosive fumes are present, without danger of ignition.
Although fibers can be made out of transparent plastic, glass, or a combination of the two, the fibers used in long-distance telecommunications applications are always glass, because of the lower optical attenuation.

Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances (up to 500 m), and single-mode fiber used for longer distance links. Because of the tighter tolerances required to couple light into and between single-mode fibers (core diameter about 10 micrometers), single-mode transmitters, receivers, amplifiers and other components are generally more expensive than multi-mode components.

Tags: ,

Comments are closed here.